the larger of two integers is 3 more than 5 times the smaller integer. find the two numbers if the smaller subtracted from the larger is 31.

Respuesta :

We have two integers (x and y).

The largest integer (y) is 3 more than 5 times the smallest integer (x).

[tex]y=3+5x[/tex]

Also, the smaller (x) substracted from the larger (y) is 31.

[tex]y-x=31[/tex]

We can replace the value of y from the second equation in the first equation and solve:

[tex]y-x=31\longrightarrow y=31+x[/tex][tex]\begin{gathered} y=3+5x=31+x \\ 3+5x=31+x \\ 5x-x=31-3 \\ 4x=28 \\ x=\frac{28}{4} \\ x=7 \end{gathered}[/tex]

Then, the value of y is:

[tex]\begin{gathered} y=31+x \\ y=31+7=38 \end{gathered}[/tex]

The integers are 7 and 38.

RELAXING NOICE
Relax