Using the quadratic formula, determine which type of solutions the given quadratic equation will have. 3x2 + 24x + 33 = 0 OA. 2 complex solutions OB. 1 complex solution OC. 2 real solutions OD. 1 real solution

Respuesta :

Given the quadratic equation:

[tex]3x^2+24x+33=0[/tex]

Dividing this equation by 3:

[tex]x^2+8x+11=0[/tex]

The general solution, given by the quadratic formula, is:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

From the equation, we identify:

[tex]\begin{gathered} a=1 \\ b=8 \\ c=11 \end{gathered}[/tex]

Now, we analyze the term inside the square root:

[tex]b^2-4ac=8^2-4\cdot1\cdot11=64-44=20>0[/tex]

Since this term is positive, then the solutions are real.

Answer: C. 2 real solutions

RELAXING NOICE
Relax