0ÂFind the cos equation given amplitude: 1. period: vertical shift: -2, and horizontal shift:A. y = cos(70+)-2OB. y = cos(+) — 2Oc. y = cos(+)-2OD. y = cos(70+)-2Reset Selection

0ÂFind the cos equation given amplitude 1 period vertical shift 2 and horizontal shiftA y cos702OB y cos 2Oc y cos2OD y cos702Reset Selection class=

Respuesta :

Given

The amplitude: 1.

The period: 2π/7.

Vertical Shift: -2.

Horizontal Shift: π/14.

To find:

The cos equation.

Explanation:

It is given that,

The amplitude: 1.

The period: 2π/7.

Vertical Shift: -2.

Horizontal Shift: π/14.

That implies,

Since

[tex]y=A\cos(B(x+C))+D[/tex]

Then,

[tex]\begin{gathered} A=1 \\ P=\frac{2\pi}{7} \\ \Rightarrow\frac{2\pi}{B}=\frac{2\pi}{7} \\ \Rightarrow B=7 \\ D=-2 \\ C=\frac{\pi}{14} \end{gathered}[/tex]

Therefore,

The cos equation is,

[tex]\begin{gathered} y=1\cos(7(\theta+\frac{\pi}{14}))+(-2) \\ y=\cos(7\theta+\frac{\pi}{2})-2 \end{gathered}[/tex]

Hence, the answer is option A).

RELAXING NOICE
Relax