0ÂFind the cos equation given amplitude: 1. period: vertical shift: -2, and horizontal shift:A. y = cos(70+)-2OB. y = cos(+) — 2Oc. y = cos(+)-2OD. y = cos(70+)-2Reset Selection

Given
The amplitude: 1.
The period: 2π/7.
Vertical Shift: -2.
Horizontal Shift: π/14.
To find:
The cos equation.
Explanation:
It is given that,
The amplitude: 1.
The period: 2π/7.
Vertical Shift: -2.
Horizontal Shift: π/14.
That implies,
Since
[tex]y=A\cos(B(x+C))+D[/tex]Then,
[tex]\begin{gathered} A=1 \\ P=\frac{2\pi}{7} \\ \Rightarrow\frac{2\pi}{B}=\frac{2\pi}{7} \\ \Rightarrow B=7 \\ D=-2 \\ C=\frac{\pi}{14} \end{gathered}[/tex]Therefore,
The cos equation is,
[tex]\begin{gathered} y=1\cos(7(\theta+\frac{\pi}{14}))+(-2) \\ y=\cos(7\theta+\frac{\pi}{2})-2 \end{gathered}[/tex]Hence, the answer is option A).