We draw a triangle QRS with vertices shown:
After dilation with a scale factor of r = 3/2, we multiply each coordinate by 3/2 and find the new coordinates Q', R', and S', respectively.
Shown below:
[tex]\begin{gathered} Q(-1,-1) \\ Q^{\prime}=(-1\times\frac{3}{2},-1\times\frac{3}{2}) \\ Q^{\prime}=(-\frac{3}{2},-\frac{3}{2}) \\ \text{and} \\ R(0,2) \\ R^{\prime}=(0\times\frac{3}{2},2\times\frac{3}{2}) \\ R^{\prime}=(0,3) \\ \text{and} \\ S(2,1) \\ S^{\prime}=(2\times\frac{3}{2},1\times\frac{3}{2}) \\ S^{\prime}=(3,\frac{3}{2}) \end{gathered}[/tex]Drawing Q' R' S', we have the dilated triangle graph: