Type the correct answer in each box. If necessary, use / for the fraction bar.Evaluate these logarithms using the properties of logarithms.

Type the correct answer in each box If necessary use for the fraction barEvaluate these logarithms using the properties of logarithms class=

Respuesta :

Using the properties of logarithms, we have:

[tex]\begin{gathered} \log _39+\log _327=\log _3(9\cdot27)\text{ ( Using the product property)} \\ \log _3(243)(\text{Multiplying)} \\ \text{ }\log _3(243)=5\text{ (Solving the logarithm)} \\ \text{Answer: 5} \end{gathered}[/tex][tex]\begin{gathered} \log _28-\log _24=\log _2(\frac{8}{4})(\text{ Using the quotient property)} \\ \log _2(2)\text{ (Dividing)} \\ 1\text{ (Solving the logarithm)} \\ \text{Answer: 1} \end{gathered}[/tex][tex]\begin{gathered} \log _55\cdot5^{\frac{1}{3}}=\log _55^{1+\frac{1}{3}}\text{ (Using the product property of exponents)} \\ \log _55^{\frac{4}{3}}\text{ (Adding fractions)} \\ \frac{4}{3}\log _55\text{ (Using the power property of logarithms)} \\ \frac{4}{3}(1)\text{ (Solving the logarithm)} \\ \frac{4}{3}(\text{Multiplying)} \\ \text{Answer: }\frac{4}{3} \end{gathered}[/tex]

RELAXING NOICE
Relax