Given:
[tex]f(t)=(t-4)(t-2)^3(t-3)^2[/tex]Required:
We need to find the long run behavior.
Explanation:
Recall that the long-run behavior of a polynomial function is determined by its leading term.
Consider the given polynomial function.
[tex]f(t)=(t-4)(t-2)^3(t-3)^2[/tex][tex]f(t)=t(1-\frac{4}{t})t^3(1-\frac{2}{t})^3t^2(1-\frac{3}{t})^2[/tex][tex]f(t)=t^6(1-\frac{4}{t})(1-\frac{2}{t})^3(1-\frac{3}{t})^2[/tex][tex]\text{ The leading term is }t^6[/tex][tex]Let\text{ }g(t)=t^6.[/tex]Take the limit as infinity.
[tex]\lim_{t\to\infty}g(t)=\lim_{t\to\infty}t^6[/tex][tex]g(t)\rightarrow\infty\text{ as t approches }\infty[/tex]Take the limit as negative infinity.
[tex]\lim_{t\to-\infty}g(t)=\operatorname{\lim}_{t\to-\infty}t^6[/tex][tex]g(t)\rightarrow\infty\text{ as t approches -}\infty.[/tex]Hence we get
[tex]f(t)\rightarrow\infty\text{ as t }\rightarrow\text{ -}\infty\text{ and t}\rightarrow\infty[/tex]Final answer:
The long run behavior is infinity.