If sine of the quantity x plus y end quantity equals one half times sine of x plus radical 3 over 2 times cosine of x comma what is the value of y?

The sine addition formula states that
[tex]\sin (a+b)=\sin a\cos b+\cos a\sin b[/tex]Thus, in our case,
[tex]\sin (x+y)=\sin x\cos y+\cos x\sin y[/tex]Then,
[tex]\begin{gathered} \Rightarrow\sin x\cos y+\cos x\sin y=\frac{1}{2}\sin x+\frac{\sqrt[]{3}}{2}\cos x \\ \Rightarrow\cos y=\frac{1}{2},\sin y=\frac{\sqrt[]{3}}{2} \end{gathered}[/tex]Solving for y,
[tex]\Rightarrow y=\cos ^{-1}(\frac{1}{2})=\frac{\pi}{3}[/tex]Thus, the answer is y=pi/3