Respuesta :

The given triangle is

We get hypotenuse =BC=40 by observing the given triangle.

Consider the angle B.

For angle B, the Opposite side is AC=32 adjacent side AB =24.

We know that

[tex]\sin \theta=\frac{Opposite\text{ side}}{\text{Hyponetuse}}[/tex]

[tex]\sin B=\frac{AC}{BC}[/tex]

Substitute AC=32 and BC=40, we get

[tex]\sin B=\frac{32}{40}=0.8[/tex]

We know that

[tex]\cos \theta=\frac{adjacent\text{ side}}{\text{Hypotenuse}}[/tex]

[tex]\cos B=\frac{AB}{BC}[/tex]

Substitute AB=24 and BC=40, we get

[tex]\cos B=\frac{24}{40}=0.6[/tex]

Consider the angle C.

For angle C, the Opposite side is AB=24 and the adjacent side AC=32.

[tex]\sin C=\frac{AB}{BC}[/tex]

Substitute AB=24 and BC=40, we get

[tex]\sin C=\frac{24}{40}=0.6[/tex]

[tex]\cos C=\frac{AC}{BC}[/tex]

Substitute AC=32 and BC=40, we get

[tex]\cos C=\frac{32}{40}=0.8[/tex]

Hence the answers are

[tex]\sin B=0.8[/tex]

[tex]\cos B=0.6[/tex]

[tex]\sin C=0.6[/tex]

[tex]\cos C=0.8[/tex]

Ver imagen AngeeQ757231
RELAXING NOICE
Relax