The z-score of a value is given by the following formula:
[tex]z=\frac{x-\mu}{\sigma}[/tex]Where mu represents the mean and sigma the standard deviation. We can rewrite this formula with the actual value as function of the z-score:
[tex]z=\frac{x-\mu}{\sigma}\implies x=\mu+\sigma z[/tex]Then, using this formula in our problem, we have the following results:
[tex]\begin{gathered} a)\quad x=100+15(-0.25)=96.25 \\ b)\quad x=100+15(-1.50)=77.5 \\ c)\quad x=100+15(0.50)=107.5 \\ d)\quad x=100+15(2.00)=130.0 \end{gathered}[/tex]