Respuesta :

In this problem

the angle theta lies on the II quadrant

so

the tangent is negative

Remember that

[tex]1+\tan ^2(\theta)=\sec ^2(\theta)[/tex]

substitute the given value

[tex]1+\tan ^2(\theta)=(-\frac{\sqrt[]{143}}{11})^2[/tex]

[tex]\tan ^2(\theta)=\frac{143}{121}-1[/tex]

[tex]\tan ^2(\theta)=\frac{22}{121}[/tex]

[tex]\tan ^{}(\theta)=-\frac{\sqrt[]{22}}{11}[/tex]

RELAXING NOICE
Relax