Given the formula that relates the wattage (W) of an appliance to the running cost(C) to be:
[tex]W=\frac{1000C}{tc}[/tex]where, t = time in hours per month
c = cost of electricity per kilowatt-hour
[tex]if\text{ c = \$}0.15,\text{ }t=720\text{ hours },\text{ W}=60\text{watts, C=?}[/tex]Using the relation, substitute the given values above in order to find C
[tex]\begin{gathered} 60=\frac{1000C}{720\times0.15} \\ 1000C=60\times720\times0.15 \\ 1000C=6480 \\ C=\frac{6480}{1000} \\ C=6.48 \\ \\ \text{Therefore, it costs \$6.48 (option b is the best answer choice)} \end{gathered}[/tex]