what is the lateral surface area of the equilateral triangular pyramid below?

Explanation
as we can see we have 4 similar triangles, let
[tex]\begin{gathered} \text{area}=4\text{ times area of a triangle} \\ \end{gathered}[/tex]then,Let
base=12 ft
height=8 ft
the area of a triangle is given by:
[tex]\begin{gathered} \text{Area}_{triangle}=\frac{base\cdot heigth}{2} \\ \text{replace}, \\ \text{area}=4\text{ times area of a triangle} \\ \text{area}=4\text{(}\frac{base\cdot\text{height}}{2}) \\ \text{area=}4\text{ (}\frac{12\text{ ft}\cdot8\text{ ft}}{2}) \\ \text{area}=4(\frac{96}{2}ft^2) \\ \text{area}=192ft^2 \end{gathered}[/tex]