First, notice that we can write sec(A) like this:
[tex]\sec (A)=\frac{1}{\cos (A)}[/tex]then, given the information on the problem, we have the following:
[tex]\begin{gathered} \sec (A)=\frac{\sqrt[]{65}}{7} \\ \Rightarrow\frac{1}{\cos (A)}=\frac{\sqrt[]{65}}{7} \\ \Rightarrow\cos (A)=\frac{7}{\sqrt[]{65}} \end{gathered}[/tex]We also know that the cosine of an angle is defined as the opposite side divided by the hypotenuse of a right triangle. We can see this in the following picture:
then, we can find the missing side using the pythagorean theorem:
[tex]\begin{gathered} (\sqrt[]{65})^2=x^2+(7)^2 \\ \Rightarrow x^2=65-(7)^2=65-49=16 \\ \Rightarrow x=\sqrt[]{16}=4 \\ x=4 \end{gathered}[/tex]now that we found the measure of the opposite side of angle A,we can calculate the sine of A to get:
[tex]\sin (A)=\frac{\text{opposite side}}{hypotenuse}=\frac{4}{\sqrt[]{65}}[/tex]then, we have the following property:
[tex]\csc (A)=\frac{1}{\sin (A)}[/tex]thus, using the value that we found for sin(A), we have:
[tex]\csc (A)=\frac{1}{\sin (A)}=\frac{1}{\frac{4}{\sqrt[]{65}}}=\frac{\sqrt[]{65}}{4}[/tex]therefore, csc(A)=sqrt(65)/4