Given:
Object A has the charge,
[tex]\begin{gathered} +14.83\text{ nC} \\ =+14.83\times10^{-9}\text{ C} \end{gathered}[/tex]This charge is at the origin.
Object B has the charge,
[tex]\begin{gathered} -25.38\text{ nC} \\ =-25.38\times10^{-9}\text{ C} \end{gathered}[/tex]Object B is at the point,
[tex]\begin{gathered} (x,\text{ y\rparen=\lparen0, 2.55 cm\rparen} \\ =(0,\text{ 0.0255 m\rparen} \end{gathered}[/tex]To find:
The magnitude of the electric force, in micro-Newtons, on object A
Explanation:
The electric force between two charges is given by,
[tex]\begin{gathered} F=k\frac{q_1q_2}{r^2} \\ K=9\times10^9\text{ N.m}^2.C^{-2} \end{gathered}[/tex]The distance between A and B is,
[tex]\begin{gathered} r=\sqrt{0^2+(0.0255)^2} \\ =0.0255\text{ m} \end{gathered}[/tex]The force will be directed towards the negative charge and the magnitude is,
[tex]\begin{gathered} F=9\times10^9\frac{14.83\times10^{-9}\times25.38\times10^{-9}}{(0.0255)^2} \\ =5209.5\times10^{-6}\text{ N} \\ =5209.5\text{ }\mu N \end{gathered}[/tex]Hence, the electric force on A is,
[tex]5209.5\text{ }\mu N[/tex]