Respuesta :

Let's make the graph of the following equation:

[tex]\text{ 2x + 3y = 6}[/tex]

Before we start, let's first transform the given equation in the standard slope-intercept form: y = mx + b.

We get,

[tex]\begin{gathered} \text{ 2x + 3y = 6} \\ \text{ 3y = 6 - 2x} \\ \text{ }\frac{\text{3y}}{\text{ 3}}\text{ = }\frac{\text{6 - 2x}}{\text{3}} \\ \text{ y = -}\frac{\text{ 2}}{\text{ 3}}x\text{ + 6} \end{gathered}[/tex]

Let's make the graph of the function.

To make the graph, let's identify at least two points that pass through its graph.

The easiest way is to find Point 1 at x = 0 and Point 2 at y = 0.

a.) Point 1 : x = 0

[tex]\text{y = -}\frac{\text{ 2}}{\text{ 3}}x\text{ + 6}[/tex][tex]\text{ = -}\frac{\text{ 2}}{\text{ 3}}(0)\text{ + 6}[/tex][tex]\text{ = 0 + 6}[/tex][tex]\text{ y = 6}[/tex]

Thus, Point 1 : 0, 6

b.) Point 2 : y = 0

[tex]\text{y = -}\frac{\text{ 2}}{\text{ 3}}x\text{ + 6}[/tex][tex]\text{0 = -}\frac{\text{ 2}}{\text{ 3}}x\text{ + 6}[/tex][tex]\frac{\text{ 2}}{\text{ 3}}x\text{ = 6}[/tex][tex]\text{ }x\text{ = 6(}\frac{\text{ 3}}{\text{ 2}})\text{ = }\frac{\text{ 18}}{\text{ 2}}[/tex][tex]x\text{ = 9}[/tex]

Therefore, Point 2 : 9, 0

Let's now plot the graph:

Ver imagen LeeL522244
RELAXING NOICE
Relax