ANSWER
The length does not exceed 13.65 meters.
EXPLANATION
Let the width of the plot of land be x.
This means that the length of the plot of land is:
[tex]\begin{gathered} 3\cdot x \\ \Rightarrow3x \end{gathered}[/tex]The plot of land is rectangular. The perimeter of a rectangle is given as:
[tex]P=2(l+w)[/tex]The perimeter of the land does not exceed 36.4 meters, which means that:
[tex]P\le36.4[/tex]This implies that:
[tex]\begin{gathered} 2(l+w)\le36.4 \\ \Rightarrow2(3x+x)\le36.4 \\ \Rightarrow2(4x)\le36.4 \\ 8x\le36.4 \end{gathered}[/tex]Hence, we can solve for x:
[tex]\begin{gathered} \Rightarrow x\le\frac{36.4}{8} \\ x\le4.55\text{ meters} \end{gathered}[/tex]Recall that length is:
[tex]l=3\cdot x[/tex]Therefore, the length of the plot of land has the values:
[tex]\begin{gathered} l\le3\cdot4.55 \\ l\le13.65\text{ meters} \end{gathered}[/tex]In other words, the length does not exceed 13.65 meters.