Respuesta :

[tex]\begin{gathered} f(x)=x^2+2x \\ g(x)=3x^2-1 \end{gathered}[/tex]

Computing (f/g)(x), we get:

[tex](\frac{f}{g})(x)=\frac{x^2+2x}{3x^2-1}[/tex]

The denominator can't be zero, that is,

[tex]3x^2-1\ne0[/tex]

Solving for x:

[tex]\begin{gathered} 3x^2\ne0+1 \\ x^2\ne\frac{1}{3} \\ x^{}\ne\sqrt[]{\frac{1}{3}} \\ \text{This square root has 2 solutions:} \\ x^{}_1\ne\sqrt[]{\frac{1}{3}} \\ x^{}_2\ne-\sqrt[]{\frac{1}{3}} \end{gathered}[/tex]

Then, the domain of (f/g)(x) is all real values except x1 and x2. In interval notation:

[tex](-\infty,-\sqrt[]{\frac{1}{3}})\cup(-\sqrt[]{\frac{1}{3}},\sqrt[]{\frac{1}{3}})\cup(\sqrt[]{\frac{1}{3}},\infty)[/tex]

RELAXING NOICE
Relax