Computing (f/g)(x), we get:
[tex](\frac{f}{g})(x)=\frac{x^2+2x}{3x^2-1}[/tex]The denominator can't be zero, that is,
[tex]3x^2-1\ne0[/tex]Solving for x:
[tex]\begin{gathered} 3x^2\ne0+1 \\ x^2\ne\frac{1}{3} \\ x^{}\ne\sqrt[]{\frac{1}{3}} \\ \text{This square root has 2 solutions:} \\ x^{}_1\ne\sqrt[]{\frac{1}{3}} \\ x^{}_2\ne-\sqrt[]{\frac{1}{3}} \end{gathered}[/tex]Then, the domain of (f/g)(x) is all real values except x1 and x2. In interval notation:
[tex](-\infty,-\sqrt[]{\frac{1}{3}})\cup(-\sqrt[]{\frac{1}{3}},\sqrt[]{\frac{1}{3}})\cup(\sqrt[]{\frac{1}{3}},\infty)[/tex]