Given:
The function is,
[tex]f(x)=x+\pi[/tex]The polynomial function is defined as,
A polynomial function of degree n in variable x is a function defined by,
[tex]\begin{gathered} P(x)=a_nx^n+a_{n-1}x^{n-1}+.\ldots\ldots\ldots\ldots.......+a_1x+a_0 \\ \text{each a}_i\text{ is real} \\ a_n\ne0,\text{ n is a whole number} \end{gathered}[/tex]So, it is true that the given function is polynomial. π is considered as constant.
Answer: true