Respuesta :

EXPLANATION

Given the triangle on the circle, we can see that the angle A is a 90 degrees angle, so we can apply the Law of Sines as shown as follows:

Law of Sines:

[tex]\frac{A}{\sin A}=\frac{B}{\sin B}[/tex]

In this case, A= 23sqrt(2), Sin A= Sin 90 = 1, B=x , Sin B = Sin 45

Replacing terms:

[tex]\frac{23\sqrt[]{2}}{1}=\frac{x}{\sin 45}[/tex]

Switching sides:

[tex]\frac{x}{\sin 45}=23\sqrt[]{2}[/tex]

Multiplying both sides by Sin 45:

[tex]x=\sin 45\cdot23\cdot\sqrt[]{2}[/tex]

Solving Sin 45:

[tex]x=\frac{\sqrt[]{2}}{2}\cdot3\cdot\sqrt[]{2}[/tex]

Applying the square root properties and grouping the fractions:

[tex]x=\frac{3}{2}\sqrt[]{(2)^2}[/tex]

Simplifying the square root with the power:

[tex]x=\frac{3}{2}\cdot2=3[/tex]

The answer is x=3

RELAXING NOICE
Relax