6.
We know area of circle is
[tex]\pi r^2[/tex]Radius increases at a rate of 4.
So, we can write:
[tex]\frac{dr}{dt}=4[/tex]We want rate of change of area. Thus,
[tex]\begin{gathered} A=\pi r^2 \\ dA=2\pi\text{rdr} \\ \frac{dA}{dt}=2\pi r\frac{dr}{dt} \end{gathered}[/tex]We want dA/dt at r = 7, so substituting all that we know:
[tex]\begin{gathered} \frac{dA}{dt}=2\pi r\frac{dr}{dt} \\ \frac{dA}{\text{dt}}=2\pi(7)(4) \\ =56\pi \end{gathered}[/tex]The correct answer: 56*pi m^2/min