To order the circles, we find the area for each one:
[tex]\begin{gathered} \text{Circle with a radius of 27 units} \\ \text{Area}=\pi r^2 \\ =\pi\times27^2 \\ =2290.22\text{ square units} \end{gathered}[/tex][tex]\begin{gathered} \text{Circle with a circumference of 87.92 units} \\ 2\pi r=87.92 \\ r=\frac{87.92}{2\pi} \\ r=13.99\text{ units} \\ \text{Area}=\pi\times13.99^2 \\ =614.87\text{ square units} \end{gathered}[/tex][tex]\begin{gathered} \text{Circle with a diameter of 19 units.} \\ \text{Radius}=19\div2=9.5\text{ units} \\ \text{Area}=\pi\times9.5^2 \\ =283.53\text{ square units} \end{gathered}[/tex]Thus, the circles in order with the smallest area to the circle with the largest area are:
• 283.53 square units: Circle with a diameter of 19 units.
,• 614.87 square units: Circle with a circumference of 87.92 units
,• Circle with an area of 1,040.09 square units
,• 2290.22 square units: Circle with a radius of 27 units