41.13
Explanation
Step 1
find the volume of the cylinder, the volume of a cylinder is given by:
[tex]\begin{gathered} \text{Volume}_c=(area\text{ of the circle)}\cdot heigth \\ \text{Volume}_c=(\frac{\pi}{4}\cdot diameter^2)\cdot heigth \end{gathered}[/tex]Let
diameter=8
heigth=13
then
[tex]\begin{gathered} \text{Volume}_c=(\frac{\pi}{4}\cdot8^2)\cdot13 \\ \text{Volume}_c=\frac{\pi}{4}\cdot64\cdot13 \\ \text{Volume}_{_c}=208\pi=653.45\text{ cubic inches} \end{gathered}[/tex]Step 2
find the volume of the rectangular prism, the volume is given by:
[tex]\text{Volume}=\text{wide}\cdot\text{depth}\cdot\text{length}[/tex]Let
wide=32 in
depth=21 in
length=40 in
then
[tex]\begin{gathered} \text{Volume}=32\text{ in}\cdot21\text{ in}\cdot40\text{ in} \\ \text{Volume}=26880\text{ cubic inches} \end{gathered}[/tex]Step 3
finally, compare the volumes to figure out number of cylinder container of water near to completely fill the
[tex]\frac{volume\text{ of cylinder}}{\text{volume of prism}}=\frac{26880in^3}{653.45in^3}=41.13[/tex]it means you need 41.13 cilynders to fill the container.
I hope this helps you