P(X > 1) = 0.9970
Explanation:The average number of students, λ = 8
Using the poisson distribution formula:
[tex]\begin{gathered} P(X=x)=\frac{(e^{-\lambda}\lambda^x)}{x!} \\ \end{gathered}[/tex]Probability that more than 1 student will have his automobile stolen during the current semester is P(X > 1)
P(X > 1) = 1 - (PX ≤ 1)
P(X≤1) = P(X=0) + P(X=1)
[tex]\begin{gathered} P(X=0)=\frac{(e^{-8})(8^0)}{0!} \\ \\ P(X=0)=0.000335 \\ \\ P(X=1)=\frac{(e^{-8})(8^1)}{1!} \\ \\ P(X=1)=0.00268 \end{gathered}[/tex]P(X≤1) = 0.000335 + 0.00268
P(X≤1) = 0.003015
P(X > 1) = 1 - (PX ≤ 1)
P(X > 1) = 1 - 0.003015
P(X > 1) = 0.9970