Respuesta :

Given the graph of the function "f", you need to find the approximate output value:

[tex]\begin{gathered} f(3.9) \\ f(4.04) \end{gathered}[/tex]

Notice that both values are closed to:

[tex]x=4[/tex]

Therefore, you can use this formula:

[tex]f(x+\Delta x)=f(x)+f^{\prime}(x)\Delta x[/tex]

In this case, you can approximate that:

[tex]f(x)=x+c[/tex]

Where "c" is a constant.

Its derivative is:

[tex]f^{\prime}(x)=1[/tex][tex]f^{\prime}(x)=1[/tex]

(a) In order to find:

[tex]f(3.9)[/tex]

You need to use:

[tex]\Delta x=4-3.9=0.1[/tex]

Then, using the formula, you get:

[tex]f(3.9)\approx4+(1)(0.1)\approx4.1[/tex]

(b) And for the other value:

[tex]\Delta x=4-4.04=-0.04[/tex]

Then:

[tex]f(4.04)\approx4+(1)(-0.04)\approx3.96[/tex]

Hence, the answers are:

(a)

[tex]f(3.9)\approx4.1[/tex]

(b)

[tex]f(4.04)\approx3.96[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico