Respuesta :
a)
We have the following function given by an integral
[tex]g(x)=\int ^x_0f(t)dt[/tex]Let's evaluate it at g(-1), we have
[tex]g(-1)=\int ^{-1}_0f(t)dt[/tex]Looking at the graph of f(t) we can see that it's the area of a triangle of base 1 and height 3, therefore
[tex]g(-1)=\int ^{-1}_0f(t)dt=-\int ^0_{-1}f(t)dt=-\frac{3\cdot1}{2}=-\frac{3}{2}[/tex]g(-1) is -3/2
[tex]g(-1)=\int ^{-1}_0f(t)dt=-\frac{3}{2}[/tex]To find the derivative of f(x) we can use the fundamental theorem, therefore
[tex]g^{\prime}(x)=\frac{d}{dx}\int ^x_0f(t)dt=\frac{d}{dx}\lbrack F(x)-F(0)\rbrack=f(x)[/tex]Therefore
[tex]g^{\prime}(x)=f(x)[/tex]Looking at the graph we can see that, g'(-1) = 0
[tex]g^{\prime}(-1)=f(-1)=0[/tex]And now for the last derivative, we have
[tex]g^{\prime}^{\prime}(-1)=f^{\prime}(-1)[/tex]As we can see f(x) is a line of positive slope at the interval (-∞, 0], the derivative of a line if the slope, we can easily see that the slope of f(x) at (-∞, 0] is 3, therefore
[tex]g^{\prime\prime}(-1)=f^{\prime}(-1)=3[/tex]d) Here we will use the fact that f is compounded function (or a modular function), so let's find the expression of f and then do the integral to find g, as we can see, we have a line for (-∞, 0] and another line for [0, ∞), the equations are very easy to find.
For (-∞, 0] we have
[tex]y=3x+3[/tex]And for [0, ∞)
[tex]y=-3x+3[/tex]Then we can write the function f
[tex]f(x)=\begin{cases}3x+3,\quad x<0 \\ -3x+3,\quad x\ge0\end{cases}[/tex]Therefore when we solve the integral for g(x) we will find two different functions, one for x>0 and the other for x<0. then let's do it first for x<0
[tex]\begin{gathered} \int ^x_0f(t)dt,\quad x<0 \\ \\ \int ^x_0(3t+3)dt\Rightarrow\frac{3t^2}{2}+3t+c\Rightarrow\frac{3x^2}{2}+3x+c-\frac{3\cdot0^2}{2}-3\cdot0-c \\ \\ \\ \int ^x_0(3t+3)dt=\frac{3x^2}{2}+3x \end{gathered}[/tex]Now we will repeat the exact same process but now for x > 0
[tex]\begin{gathered} \int ^x_0f(t)dt,\quad x>0 \\ \\ \int ^x_0(-3t+3)dt\Rightarrow-\frac{3t^2}{2}+3t+c\Rightarrow-\frac{3x^2}{2}+3x+c+\frac{3\cdot0^2}{2}-3\cdot0-c \\ \\ \int ^x_0(-3t+3)dt=-\frac{3x^2}{2}+3x \end{gathered}[/tex]Therefore we have the expression for g now
[tex]\begin{gathered} g(x)=\begin{cases}\frac{3x^2}{2}+2x,\quad x<0 \\ \\ -\frac{3x^2}{2}+2x,\quad x\ge0\end{cases} \\ \end{gathered}[/tex]Then to graph g we must graph two quadratics! Let's plot these quadratics from -2 to 2

