Respuesta :

Finding the length of AB means to find the distance of AB.

Given:

[tex]\begin{gathered} (x_1,y_1)=(7,-8) \\ \text{and} \\ (x_2,y_2)=(-3,6) \end{gathered}[/tex]

We can use the Distance Formula, shown below to find the distance between A and B.

Distance Formula:

[tex]D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

We can substitute the points and find the answer:

[tex]\begin{gathered} D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \\ D=\sqrt[]{(6--8_{})^2+(-3-7)^2} \\ D=\sqrt[]{(14)^2+(-10)^2} \\ D=\sqrt[]{296} \\ D=17.2 \end{gathered}[/tex]

The length of AB = 17.2

RELAXING NOICE
Relax