How many solutions are there for the system shown below? х+у= 25 ху = -5 ОА. 1 ов. 4 ОО ос. з OD D. 2 о

Answer:
Choice D. 2 solutions
Explanation:
Adding the two equations gives
[tex]\begin{gathered} x^2+y^2=25 \\ x-y^2=-5 \\ --------- \\ x^2+x=20 \end{gathered}[/tex]Therefore, we have the quadratic equations
[tex]x^2+x-20=0[/tex]which has the solutions ( using quadratic formula)
[tex]x=\frac{-1\pm\sqrt[]{1^2-4(1)(-20)}}{2}[/tex][tex]x=\frac{-1\pm\sqrt[]{81}}{2}[/tex]meaning we have two values of x that satisfy the system of equations.
Therefore, choice D is the correct answer.