Solution
Step 1:
Give data
[tex]\begin{gathered} mean\text{ }\mu\text{ = 5.1} \\ standard\text{ }\sigma\text{ = 0.9} \\ \text{x = 6.9} \end{gathered}[/tex]Step 2:
Find the z-score
[tex]\begin{gathered} \text{z = }\frac{x\text{ - }\mu}{\sigma} \\ \text{z = }\frac{6.9\text{ - 5.1}}{0.9} \\ \text{z = 2} \end{gathered}[/tex]Step 3:
Draw the normal distribution curve
Step 4
[tex]P(x\text{ > 6.9\rparen = p\lparen z >2\rparen = 0.4772}[/tex]Final answer
0.4772 x 100
= 47.72%