Given data:
Yan speed;
[tex]u_1=37\text{ km/h}[/tex]Christopher speed;
[tex]u_2=38.9\text{ km/h}[/tex]Christophe starts 30 s later than Yan. Therefore, Christophe takes 30 s less than Yan to reach the same distance.
Part (A)
The distance is given as,
[tex]d=ut[/tex]Let both Yan and Christophe meet at d distance from the start position. Therefore,
[tex]u_1t=u_2(t-30)[/tex]Substituting all known values,
[tex]\begin{gathered} (37\text{ km/h})t=(38.9\text{ km/h})\times(t-30) \\ \frac{(37\text{ km/h})}{(38.9\text{ km/h})}=\frac{(t-30)}{t} \\ 0.95=1-\frac{30}{t} \\ \frac{30}{t}=1-0.95 \\ \frac{30}{t}=0.05 \\ t=\frac{30}{0.05} \\ t=600\text{ s} \end{gathered}[/tex]Therefore, 600 s after Yan's departure Christophe will join him.
Part (B)
The distance is given as,
[tex]d=u_1t[/tex]Substituting all known values,
[tex]\begin{gathered} d=(37\text{ km/h})\times(600\text{ s}) \\ =(37\text{ km/h})\times(600\text{ s})\times(\frac{1\text{ hr}}{3600\text{ s}}) \\ \approx6.17\text{ km} \end{gathered}[/tex]Therefore, Christophe joins Yan after 6.17 km from the start.