A bike race against the clock takes place on a straight road. Yan drives at 37 km / h and he starts the course 30s before Christophe. Christophe is traveling at 38.9 km / h.A) How long after Yan's departure will Christophe join him?B) How far from the start will Christophe join Yan?

Respuesta :

Given data:

Yan speed;

[tex]u_1=37\text{ km/h}[/tex]

Christopher speed;

[tex]u_2=38.9\text{ km/h}[/tex]

Christophe starts 30 s later than Yan. Therefore, Christophe takes 30 s less than Yan to reach the same distance.

Part (A)

The distance is given as,

[tex]d=ut[/tex]

Let both Yan and Christophe meet at d distance from the start position. Therefore,

[tex]u_1t=u_2(t-30)[/tex]

Substituting all known values,

[tex]\begin{gathered} (37\text{ km/h})t=(38.9\text{ km/h})\times(t-30) \\ \frac{(37\text{ km/h})}{(38.9\text{ km/h})}=\frac{(t-30)}{t} \\ 0.95=1-\frac{30}{t} \\ \frac{30}{t}=1-0.95 \\ \frac{30}{t}=0.05 \\ t=\frac{30}{0.05} \\ t=600\text{ s} \end{gathered}[/tex]

Therefore, 600 s after Yan's departure Christophe will join him.

Part (B)

The distance is given as,

[tex]d=u_1t[/tex]

Substituting all known values,

[tex]\begin{gathered} d=(37\text{ km/h})\times(600\text{ s}) \\ =(37\text{ km/h})\times(600\text{ s})\times(\frac{1\text{ hr}}{3600\text{ s}}) \\ \approx6.17\text{ km} \end{gathered}[/tex]

Therefore, Christophe joins Yan after 6.17 km from the start.

RELAXING NOICE
Relax