First, we should identify the coordinates of the vertices of the triangle UVW.
The coordinates of the vertices are:
U(0,3)
V(6,6)
W(6, 0)
We can find the coordinates of the resulting triangle after dilation, given that the center of dilation is the origin using the relationship:
[tex](x,\text{ y) }\rightarrow\text{ (kx, ky)}[/tex]
Where k is the scale factor
Applying this rule to the original coordinates of the triangle UVW, we have the new coordinates to be:
[tex]\begin{gathered} U^{\prime}(\frac{0}{3},\frac{3}{3})\text{ = U'(0, 1)} \\ V^{\prime}(\frac{6}{3},\text{ }\frac{6}{3})\text{ = V'(2, 2)} \\ W^{\prime}(\frac{6}{3},\text{ }\frac{0}{3})\text{ = W'(2, 0)} \end{gathered}[/tex]
Hence, the coordinates of the resulting triangle are:
U'(0, 1)
V'(2,2)
W'(2,0)
Answer:
Option D