[tex]h(x)=\frac{x+7}{x^2-49}[/tex]
g. The vertical asymptote is located at x = 7, so, let's find the one-sided limits:
[tex]\begin{gathered} \lim _{x\to7^-}(h(x))=\lim _{x\to7^-}\frac{7+7}{x^2-49}=14\lim _{x\to7^-}\frac{1}{x^2-49} \\ so\colon \\ x^2-49<0_{\text{ }}x\in(-\infty,7) \\ so\colon \\ 14\lim _{x\to7^-}\frac{1}{x^2-49}=14(-\infty)=-\infty \end{gathered}[/tex][tex]\begin{gathered} \lim _{x\to7^+}(h(x))=\lim _{x\to7^+}\frac{7+7}{x^2-49}=14\lim _{x\to7^+}\frac{1}{x^2-49} \\ so\colon \\ x^2-49>0_{\text{ }}x\in(7,\infty) \\ so\colon \\ 14\lim _{x\to7^+}\frac{1}{x^2-49}=14(\infty)=\infty \end{gathered}[/tex]
Therefore, when h(x) approaches to 7 from the left it tends to - infinity and when approaches to 7 from the right, it tends to +infinity