Answer:
The weight of the contents in the container is;
[tex]1142\text{ pounds}[/tex]Explanation:
Given that the shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 13.5 feet, and a height of 15 feet.
[tex]\begin{gathered} l=12\text{ ft} \\ w=13.5\text{ ft} \\ h=15\text{ ft} \end{gathered}[/tex]Recall that the volume of a right rectangular prism can be calculated using the formula;
[tex]V=l\times w\times h[/tex]substituting the given values;
[tex]\begin{gathered} V=12\times13.5\times15ft^3 \\ V=2430\text{ cubic feet} \end{gathered}[/tex]from the question,the container is completely filled with contents that weigh an average, 0.47 pound per cubic foot.
[tex]\text{density = 0.47 lb/ft}^3[/tex]The weight of the content would be;
[tex]\text{mass = density }\times\text{ volume}[/tex]substituting the density and volume of contents, we have;
[tex]\begin{gathered} mass=0.47\times2430 \\ =1142.1\text{ pounds} \\ \approx1142\text{ pounds} \end{gathered}[/tex]Therefore, the weight of the contents in the container is;
[tex]1142\text{ pounds}[/tex]