Respuesta :
Let "x" represent the shorter leg of the triangle.
Then, the long leg is 7m longer than the shorter leg, we can represent this as "x+7"
And the hypothenuse is 9m longer than the shorter leg, we can represent this as "x+9"
The Pythagoras theorem states that the square of the hypothenuse is equal to the sum of the squares of the sides of the triangle, so that:
[tex]a^2+b^2=c^2[/tex]a: shortest leg
b: longest leg
c: hypothenuse
Replace with the expressions for each side:
[tex]x^2+(x+7)^2=(x+9)^2[/tex]First solve both square of the binomials separatelly from the main expression:
1)
[tex]\begin{gathered} (x+7)^2=(x+7)(x+7) \\ x^2+7x+7x+49 \\ x^2+14x+49 \end{gathered}[/tex]2)
[tex]\begin{gathered} (x+9)^2=(x+9)(x+9) \\ x^2+9x+9x+81 \\ x^2+18x+81 \end{gathered}[/tex]Now that both terms are solved, input the results in the main expression
[tex]\begin{gathered} x^2+(x+7)^2+(x+9)^2 \\ x^2+(x^2+14x+49)=(x^2+18x+81) \end{gathered}[/tex]Now we need to equal the expression to zero, so perform the inverse operation to pass all terms to the left side of the equal sign
[tex]\begin{gathered} x^2+(x^2+14x+49)-x^2-18x-81=x^2-x^2+18x-18x+81-81 \\ x^2+x^2+14x+49-x^2-18x-81=0 \end{gathered}[/tex]Order all like terms together and simplify:
[tex]\begin{gathered} x^2+x^2-x^2+14x-18x+49-81=0 \\ x^2-4x-32=0 \end{gathered}[/tex]With this, we stablished a quadratic expression. Using the quadratic formula we have to calculate the possible values of x
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]For our expression
a=1
b=-4
c=-32
Imput these values in the formula and calculate:
[tex]\begin{gathered} x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4\cdot1\cdot(-4)}}{2\cdot1} \\ x=\frac{4\pm\sqrt[]{16+16}}{2} \\ x=\frac{4\pm\sqrt[]{32}}{2} \\ x=\frac{4\pm4\sqrt[]{2}}{2} \end{gathered}[/tex]Now calculate both values of x:
Positive
[tex]\begin{gathered} x=\frac{4+4\sqrt[]{2}}{2} \\ x=2+2\sqrt[]{2} \\ x\cong4.828 \end{gathered}[/tex]Negative
[tex]\begin{gathered} x=\frac{4-4\sqrt[]{2}}{2} \\ x=2-2\sqrt[]{2} \\ x\cong-0.828 \end{gathered}[/tex]The length of the side of a triangle cannot be a negative value, so the only possible value of x will be:
[tex]x=2+2\sqrt[]{2}=4.828m[/tex]Now that we know the value of the shortest leg, we can calculate the value of the longest leg and the hypothenuse:
Longest leg
[tex]x+7=(2+2\sqrt[]{2})+7=9+2\sqrt[]{2}\cong11.828m[/tex]Hypothenuse
[tex]x+9=(2+2\sqrt[]{2})+9=11+2\sqrt[]{2}\cong13.828m[/tex]
