Given:
[tex]\begin{gathered} Principal(P)=\text{ \$2200} \\ rate\text{ of interest(r)=}6\text{ \%} \\ \text{Number of years(n)=9} \end{gathered}[/tex]Required:
How much will the investment be worth after 9 years.
Formula:
[tex]\text{Amount(A)}=P(1+r)^n[/tex]Explanation:
Rate of interest is given in percentage we have to convert that as direct value to substitute in the formula.
[tex]\begin{gathered} r=6\text{ \%} \\ r=\frac{6}{100} \\ r=0.06 \end{gathered}[/tex]By substitute all values in the formula,we get
[tex]\begin{gathered} A=2200(1+0.06)^9 \\ A=2200(1.06)^9 \\ A=2200(1.6895) \\ A=\text{ 3}716.9 \\ A=\text{ \$}3717 \end{gathered}[/tex]Final Answer:
Investment worth after 9 years be $3717