I answered part a and b already, need help with c and d.

Given the forces:
300 N at 0 degrees
400 N at 90 degrees
Let's solve for part C and D.
Part c.
The magnitude of the resultant force.
To find the magnitude of the resultant force, apply the formula:
[tex]F_R=\sqrt[]{F^2_x+F^2_y}[/tex]Where:
[tex]\begin{gathered} F_x=A_x+B_x \\ \text{Where:} \\ A_x=A\cos \theta=300\cos 0=300 \\ B_x=B\cos \theta=400\cos 90=0 \\ \\ F_x=300+0=300N \end{gathered}[/tex][tex]\begin{gathered} F_y=A_y+B_y \\ \text{Where:} \\ A_y=A\sin \theta=300\sin 0=0N \\ B_y=B\sin \theta=400\sin 90=400\text{ N} \\ \\ F_y=0+400=400N_{} \end{gathered}[/tex]Fx = 300
Fy = 400
Hence, we have:
[tex]\begin{gathered} F_R=\sqrt[]{(300)^2+(400)^2} \\ \\ F_R=\sqrt[]{90000+160000} \\ \\ F_R=\sqrt[]{250000} \\ \\ F_R=500\text{ N} \end{gathered}[/tex]Therefore, the magnitude of the resultant force is 500 N.
• Part d.
The direction of the resultant force.
To find the direction of the resulatnt force, apply the fomula(trig ratio for tan):
[tex]\tan \theta=\frac{F_y}{F_x}[/tex]Hence, we have:
[tex]\begin{gathered} \tan \theta=\frac{400}{300} \\ \\ \tan \theta=1.33 \end{gathered}[/tex]Take the tan inverse of both sides:
[tex]\begin{gathered} \theta=\tan ^{-1}(1.33) \\ \\ \theta=53.13\degree \end{gathered}[/tex]Therefore, the direction of the resultant force is 53.13° from the x-axis.
ANSWER:
(c) 500 N
(d) 53.13°