Given:
The mass of the ball is
[tex]\begin{gathered} m=221\text{ g} \\ =0.221\text{ kg} \end{gathered}[/tex]The initial height of the ball is
[tex]h=39.8\text{ m}[/tex]The initial speed of the ball is
[tex]v_i=36.7\text{ m/s}[/tex]To find:
the impact speed of the ball when it strikes the ground
Explanation:
The initial potential energy of the ball is
[tex]\begin{gathered} (PE)_i=mgh \\ =0.221\times9.8\times39.8 \\ =86.2\text{ J} \end{gathered}[/tex]The initial kinetic energy is
[tex]\begin{gathered} (KE)_i=\frac{1}{2}mv_i^2 \\ =\frac{1}{2}\times0.221\times(36.7)^2 \\ =148.8\text{ J} \end{gathered}[/tex]The final energy of the ball is fully kinetic energy. Let the final impact speed of the ball is
[tex]v_f[/tex]We can write, using the energy conservation principle that
[tex]\begin{gathered} (PE)_i+(KE)_i=\frac{1}{2}mv_f^2 \\ 86.2+148.8=\frac{1}{2}\times0.221\times v_f^2 \\ v_f^2=2\times\frac{86.2+148.8}{0.221} \\ v_f=46.1\text{ m/s} \end{gathered}[/tex]Hence, the final impact speed of the ball is 46.1 m/s.