Each leg of a 45°-45°-90° triangle measures 14 cm. What is the length of the hypotenuse?● 7cm● [tex]7 \sqrt{2} [/tex]●14cm[tex]14 \sqrt{2cm} [/tex]

Respuesta :

Explanation

If we have a 45°- 45°- 90° triangle, two or the sides have the same length and the hypotenuse can be calculated using the Pythagorean Theorem as:

[tex]\text{Hypotenuse}=\sqrt[]{x^2+x^2}[/tex]

Where x is the length of the sides. So, replacing x by 14, we get:

[tex]\begin{gathered} \text{Hypotenuse}=\sqrt[]{14^2+14^2} \\ \text{Hypotenuse}=\sqrt[]{2(196^{})} \\ \text{Hypotenuse}=\sqrt[]{196}\cdot\sqrt[]{2} \\ \text{Hypotenuse}=14\sqrt[]{2} \end{gathered}[/tex]

Therefore, the answer is: 14√2

Answer: 14√2

RELAXING NOICE
Relax