Explanation
If we have a 45°- 45°- 90° triangle, two or the sides have the same length and the hypotenuse can be calculated using the Pythagorean Theorem as:
[tex]\text{Hypotenuse}=\sqrt[]{x^2+x^2}[/tex]Where x is the length of the sides. So, replacing x by 14, we get:
[tex]\begin{gathered} \text{Hypotenuse}=\sqrt[]{14^2+14^2} \\ \text{Hypotenuse}=\sqrt[]{2(196^{})} \\ \text{Hypotenuse}=\sqrt[]{196}\cdot\sqrt[]{2} \\ \text{Hypotenuse}=14\sqrt[]{2} \end{gathered}[/tex]Therefore, the answer is: 14√2
Answer: 14√2