Which recursive formula can be used to generate the sequence below,)

Given:
[tex]\begin{gathered} f(1)=6 \\ 6,1,-4,-9,... \end{gathered}[/tex]Required:
We need to find recursive formula
Explanation:
Here we have
[tex]\begin{gathered} f(1)=6 \\ f(2)=1 \\ f(3)=-4 \\ f(4)=-9 \end{gathered}[/tex]Here d is the difference so d must be
[tex]d=f(2)-f(1)=1-6=-5[/tex]now
[tex]\begin{gathered} f(n)=f(1)+(n-1)d \\ f(n)=6-5d+5 \end{gathered}[/tex]now for next term
[tex]\begin{gathered} f(n+1)=f(1)+nd \\ f(n+1)=6-5d \end{gathered}[/tex]compare both equation
Final answer:
[tex]\begin{gathered} f(n)=f(n+1)+5 \\ f(n+1)=f(n)-5 \end{gathered}[/tex]B is the answer