Given data:
* The frequency of the tuning fork is,
[tex]f=440\text{ Hz}[/tex]* The wavelength of the fork at 20 degree is,
[tex]\lambda=0.78\text{ m}[/tex]Solution:
The velocity of the tuning fork wave at 20 degree is,
[tex]\begin{gathered} v_{\circ}=\lambda f \\ v_{\circ}=0.78\times440 \\ v_{\circ}=343.2\text{ m/s} \end{gathered}[/tex]The velocity of the tuning fork wave at 13 degree is,
[tex]v=v_{\circ}\sqrt[]{\frac{T}{T_{\circ}}}[/tex]where,
[tex]\begin{gathered} T=13^{\circ}C \\ T=286.15\text{ K} \end{gathered}[/tex]and,
[tex]\begin{gathered} T_{\circ}=20^{\circ}C \\ T_{\circ}=293.15\text{ K} \end{gathered}[/tex]Thus, the velocity of the sound wave at 13 degree Celsius is,
[tex]\begin{gathered} v=343.2\times\sqrt[]{\frac{286.15}{293.15}} \\ v=339.08\text{ m/s} \end{gathered}[/tex]The wavelength of tthe sound wave at 13 degree celsius is,
[tex]\lambda^{\prime}=\frac{v}{f}[/tex]Substituting the known values,
[tex]\begin{gathered} \lambda^{\prime}=\frac{339.08}{440} \\ \lambda^{\prime}=0.77\text{ m} \end{gathered}[/tex]Thus, the wavelength of the sound wave at 13 degree celsius is 0.77 m.
Hence, option 1 is the correct answer.