Which of the following are trigonometric identities? Select all that apply

WSimpe are given the following trigonometric identities:
Part A.
[tex]cos^2\theta=sin^2\theta-1[/tex]This is not a trigonometric identity. The true identity is:
[tex]cos^2\theta+sin^2\theta=1[/tex]Part B
[tex]sin\theta=\frac{1}{csc\theta}[/tex]This is a trigonometric identity by definition.
Part C.
[tex]sec\theta=\frac{1}{cot\theta}[/tex]This is not a trigonometric identity by definition
Part D.
[tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]This can be proven to be true if we take the following identity:
[tex]cot\theta=\frac{1}{tan\theta}[/tex]Since
[tex]tan\theta=\frac{sin\theta}{cos\theta}[/tex]Substituting in the identity for cot we get:
[tex]cot\theta=\frac{1}{\frac{sin\theta}{cos\theta}}[/tex]Simplifying:
[tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]Therefore, the identity is true.
Part W.
[tex]1+cot^2\theta=csc^2\theta[/tex]To prove this identity we will use the following identity:
[tex]sin^2\theta+cos^2\theta=1[/tex]Now, we divide both sides by the square of the sine:
[tex]\frac{sin^2\theta}{sin^2\theta}+\frac{cos^2\theta}{sin^2\theta}=\frac{1}{sin^2\theta}[/tex]The first term is 1:
[tex]1+\frac{cos^{2}\theta}{s\imaginaryI n^{2}\theta}=\frac{1}{s\imaginaryI n^{2}\theta}[/tex]We can use the identity in part D for the second term:
[tex]1+cot^2\theta=\frac{1}{sin^2\theta}[/tex]For the last term, we use identity in part B:
[tex]1+cot^2\theta=csc^2\theta[/tex]Therefore, the identity is true.