Respuesta :

WSimpe are given the following trigonometric identities:

Part A.

[tex]cos^2\theta=sin^2\theta-1[/tex]

This is not a trigonometric identity. The true identity is:

[tex]cos^2\theta+sin^2\theta=1[/tex]

Part B

[tex]sin\theta=\frac{1}{csc\theta}[/tex]

This is a trigonometric identity by definition.

Part C.

[tex]sec\theta=\frac{1}{cot\theta}[/tex]

This is not a trigonometric identity by definition

Part D.

[tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]

This can be proven to be true if we take the following identity:

[tex]cot\theta=\frac{1}{tan\theta}[/tex]

Since

[tex]tan\theta=\frac{sin\theta}{cos\theta}[/tex]

Substituting in the identity for cot we get:

[tex]cot\theta=\frac{1}{\frac{sin\theta}{cos\theta}}[/tex]

Simplifying:

[tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]

Therefore, the identity is true.

Part W.

[tex]1+cot^2\theta=csc^2\theta[/tex]

To prove this identity we will use the following identity:

[tex]sin^2\theta+cos^2\theta=1[/tex]

Now, we divide both sides by the square of the sine:

[tex]\frac{sin^2\theta}{sin^2\theta}+\frac{cos^2\theta}{sin^2\theta}=\frac{1}{sin^2\theta}[/tex]

The first term is 1:

[tex]1+\frac{cos^{2}\theta}{s\imaginaryI n^{2}\theta}=\frac{1}{s\imaginaryI n^{2}\theta}[/tex]

We can use the identity in part D for the second term:

[tex]1+cot^2\theta=\frac{1}{sin^2\theta}[/tex]

For the last term, we use identity in part B:

[tex]1+cot^2\theta=csc^2\theta[/tex]

Therefore, the identity is true.

RELAXING NOICE
Relax