If the x term is positive, that means the hyperbola opens horizontally.
To give the coordiantes of the verticesr:
[tex]\begin{gathered} (h\pm a,\text{ k)} \\ \text{Left vertex:} \\ (2-2,\text{ 1)=}(0,\text{ 1)} \\ \text{Right vertex:} \\ (2+2,\text{ 1)}=(4,\text{ 1)} \end{gathered}[/tex]For the coordinates of the foci or focus:
[tex]\begin{gathered} (h\pm c,\text{ k)} \\ Where\text{ c=}\sqrt[]{a^2+b^2} \\ c=\sqrt[]{4+9}=\sqrt[\square]{13}=3.61 \\ \text{Left focus:} \\ (2-3.61,\text{ k)=(-1.61, 1)} \\ \text{Right focus:} \\ (2+3.61,\text{ k)=(5.61, 1)} \end{gathered}[/tex]The center of the hyperbola is given by:
c(h,k)
c(2, 1)