Which pair of functions are inverses of each other?1+6A. f(x) = - 6 and g(x) =B. f(x) = { + 4 and g(x) = 3x - 4C. f(x) = 2x– 9 and g(x) = $49D. f(x) = { and g(x) = 5x3

To know if a pair of functions are inverses of each other we must verify if
[tex](f\circ g)(x)=(g\circ f)(x)=x[/tex]Option A.
[tex]f(x)=\frac{2}{x}\text{ and }g(x)=\frac{x+6}{2}[/tex]Then
[tex]\begin{gathered} (f\circ g)(x)=f(g(x)) \\ =\frac{2}{\frac{x+6}{2}}=\frac{4}{x+6} \end{gathered}[/tex]So, option A is not the correct answer.
Option B.
[tex]f(x)=\frac{x}{3}+4\text{ and}g(x)=3x-4[/tex]Then
[tex]\begin{gathered} (f\circ g)(x)=f(g(x)) \\ =\frac{3x-4}{3}+4 \\ =x-\frac{4}{3}+4 \\ =x+\frac{8}{3} \end{gathered}[/tex]So, option B is not the correct answer.
Option C.
[tex]f(x)=2x-9\text{ and }g(x)=\frac{x+9}{2}[/tex]Then
[tex]\begin{gathered} (f\circ g)(x)=f(g(x)) \\ =2(\frac{x+9}{2})-9 \\ =x+9-9 \\ =x \end{gathered}[/tex]And
[tex]\begin{gathered} (g\circ f)(x)=g(f(x)) \\ =\frac{2x-9+9}{2} \\ =\frac{2x}{2} \\ =x \end{gathered}[/tex]Finally, we can see that option C meets the condition.
So, the answer is letter C.