Respuesta :

The slope-intercept form of an equation of a straight line is

[tex]\begin{gathered} y=mx+b \\ \text{Where } \\ m\text{ is the slope and b is the y-intercept} \end{gathered}[/tex]

From the given table,

Taking two coordinates from the table,

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(0,100) \\ (x_2,y_2)\Rightarrow(1,105) \end{gathered}[/tex]

To find the equation of a staright line, the formula is

[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}[/tex]

Sustituting for the coordinates into the formula above

[tex]\begin{gathered} \frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1} \\ \frac{y-100_{}}{x-0}=\frac{105_{}-100_{}}{1-0} \\ \frac{y-100_{}}{x}=\frac{5}{1} \\ \text{Crossmultiply} \\ 1(y-100)=5\times x \\ y-100=5x \\ y=5x+100 \end{gathered}[/tex]

Hence, the slope intercept form of the equation representing the data in the table is

[tex]y=5x+100[/tex]

RELAXING NOICE
Relax