Can I get an answer to this question please c&d

As given by the question
There are given that the integration:
[tex]\int \frac{5x+2}{(3x+4)(x-1)}dx[/tex]Now,
First, take the partial fraction of the given integration:
[tex]\frac{5x+2}{(3x+4)(x-1)}=\frac{2}{3x+4}+\frac{1}{x-1}[/tex]Then,
[tex]\begin{gathered} \int \frac{5x+2}{(3x+4)(x-1)}dx=\int \frac{2}{3x+4}+\frac{1}{x-1}dx \\ =\int \frac{2}{3x+4}dx+\int \frac{1}{x-1}dx \end{gathered}[/tex]Then,
From the formula:
[tex]\int \frac{2}{3x+4}dx+\int \frac{1}{x-1}dx=\frac{2}{3}\ln |3x+4++\ln |x-1|+c[/tex]Hence, the value of the given integration is shown below:
[tex]\int \frac{5x+2}{(3x+4)(x-1)}dx=\frac{2}{3}\ln |3x+4++\ln |x-1|+c[/tex]