we have the system of equations
4x+3y=0
x+2y=5
Convert to matrix form
[tex]A\cdot X=B[/tex]matrix A
[tex]A=\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}[/tex]matrix X
[tex]X=\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}[/tex]matrix B
[tex]B=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}[/tex]substitute
[tex]\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}\cdot\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}[/tex]Find out the determinant of matrix A
D=4*2-3*1
D=5
Find out the determinant Dx
[tex]Dx=\begin{bmatrix}{0} & {3} \\ {5} & {2}\end{bmatrix}=-15[/tex]Find out the determinant Dy
[tex]Dy=\begin{bmatrix}{4} & {0} \\ {1} & {5}\end{bmatrix}=20[/tex]Find out the value of x
x=Dx/D
x=-15/5=-3
Find out the value of y
y=Dy/D
y=20/5=4
therefore