Respuesta :

we have the system of equations

4x+3y=0

x+2y=5

Convert to matrix form

[tex]A\cdot X=B[/tex]

matrix A

[tex]A=\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}[/tex]

matrix X

[tex]X=\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}[/tex]

matrix B

[tex]B=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}[/tex]

substitute

[tex]\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}\cdot\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}[/tex]

Find out the determinant of matrix A

D=4*2-3*1

D=5

Find out the determinant Dx

[tex]Dx=\begin{bmatrix}{0} & {3} \\ {5} & {2}\end{bmatrix}=-15[/tex]

Find out the determinant Dy

[tex]Dy=\begin{bmatrix}{4} & {0} \\ {1} & {5}\end{bmatrix}=20[/tex]

Find out the value of x

x=Dx/D

x=-15/5=-3

Find out the value of y

y=Dy/D

y=20/5=4

therefore

The solution is (-3,4)

RELAXING NOICE
Relax