Not a graded or timed assessment. Need help, thank you. :)

We are given the following division problem
[tex]\frac{m^8-1}{m-1}[/tex]We need to factor out the numerator first
[tex]m^8-1=(m^4)^2-1^2[/tex]Apply the difference of squares formula
[tex](m^4)^2-1^2=(m^4+1)(m^4-1)[/tex]Again, factor out the term on the right side
[tex]m^4-1=(m^2)^2-1^2[/tex]Apply the difference of squares formula
[tex](m^2)^2-1^2=(m^2+1)(m^2-1)[/tex]Again, factor out the term on the right side
[tex]m^2-1=(m)^2-1^2[/tex]Apply the difference of squares formula
[tex](m)^2-1^2=(m+1)(m-1)_{}[/tex]Finally, the expression becomes
[tex]\frac{m^8-1}{m-1}=\frac{(m^4+1)(m^2+1)(m+1)(m-1)}{m-1}[/tex](m-1) cancels out
[tex]\frac{m^8-1}{m-1}=(m^4+1)(m^2+1)(m+1)[/tex]Therefore, the quotient is
[tex](m^4+1)(m^2+1)(m+1)[/tex]Or in simplified form
[tex]m^7+m^6+m^5+m^4+m^3+m^2+m+1[/tex]