Respuesta :

Answer:

The solution to the system of equations is;

[tex]\begin{gathered} x=6 \\ y=-6 \end{gathered}[/tex]

Explanation:

Given the system of equations;

[tex]\begin{gathered} -4x-2y=-12\text{ --------1} \\ 4x+8y=-24\text{ ---------2} \end{gathered}[/tex]

Solving the system of equations by elimination.

Adding the two equations;

[tex]\begin{gathered} -4x-2y=-12 \\ + \\ 4x+8y=-24 \\ = \\ 0+6y=-36 \\ 6y=-36 \\ y=-\frac{36}{6} \\ y=-6 \end{gathered}[/tex]

Solving for x;

[tex]\begin{gathered} 4x+8y=-24 \\ 4x+8(-6)=-24 \\ 4x-48=-24 \\ 4x=-24+48 \\ 4x=24 \\ x=\frac{24}{4} \\ x=6 \end{gathered}[/tex]

Therefore, the solution to the system of equations is;

[tex]\begin{gathered} x=6 \\ y=-6 \end{gathered}[/tex]

RELAXING NOICE
Relax