Hello, I just need this explained in the elimination process, thanks!

Answer:
The solution to the system of equations is;
[tex]\begin{gathered} x=6 \\ y=-6 \end{gathered}[/tex]Explanation:
Given the system of equations;
[tex]\begin{gathered} -4x-2y=-12\text{ --------1} \\ 4x+8y=-24\text{ ---------2} \end{gathered}[/tex]Solving the system of equations by elimination.
Adding the two equations;
[tex]\begin{gathered} -4x-2y=-12 \\ + \\ 4x+8y=-24 \\ = \\ 0+6y=-36 \\ 6y=-36 \\ y=-\frac{36}{6} \\ y=-6 \end{gathered}[/tex]Solving for x;
[tex]\begin{gathered} 4x+8y=-24 \\ 4x+8(-6)=-24 \\ 4x-48=-24 \\ 4x=-24+48 \\ 4x=24 \\ x=\frac{24}{4} \\ x=6 \end{gathered}[/tex]Therefore, the solution to the system of equations is;
[tex]\begin{gathered} x=6 \\ y=-6 \end{gathered}[/tex]