Explanation
Step 1
let
x represents the first number
y represents the second number
Hence,
a)Seven times the first number plus six times the second number equals 31
so, traslating
[tex]7x+6y=31\rightarrow equation(1)[/tex]b)Three times the first number minus ten times the second number is 29
[tex]3x-10y=29\rightarrow equation(2)[/tex]Step 2
now. we have a system of equations, Let's solve it !
[tex]\begin{gathered} 7x+6y=31\rightarrow equation(1) \\ 3x-10y=29\rightarrow equation(2) \end{gathered}[/tex]a) isolate x in equation (1) and replace in equation(2)
[tex]\begin{gathered} 7x+6y=31\rightarrow equation(1) \\ \text{subtract 6y in both sides} \\ 7x+6y-6y=31-6y \\ 7x=31-6y \\ \text{divide both sides by 7} \\ \frac{7x}{7}=\frac{31-6y}{7} \\ x=\frac{31}{7}-\frac{6}{7}y\rightarrow equation\text{ (3)} \\ \text{now , replace eq(3) into eq(2)} \\ 3x-10y=29\rightarrow equation(2) \\ 3(\frac{31}{7}-\frac{6}{7}y)-10y=29 \\ \frac{93}{7}-\frac{18}{7}y-10y=29 \\ \frac{93}{7}-\frac{88}{7}y=29 \\ \text{subtract 93/7 in both sides} \\ \frac{93}{7}-\frac{88}{7}y-\frac{93}{7}=29-\frac{93}{7} \\ -\frac{88}{7}y=\frac{110}{7} \\ -88y=110 \\ y=\frac{110}{-88} \\ y=\frac{55}{44}=-\frac{5}{4} \\ so \\ x=-\frac{5}{4} \end{gathered}[/tex]b) now, replace the y value into eq(3)
[tex]\begin{gathered} x=\frac{31}{7}-\frac{6}{7}y\rightarrow equation\text{ (3)} \\ x=\frac{31}{7}-\frac{6}{7}(-\frac{5}{4}) \\ x=\frac{31}{7}+\frac{30}{28} \\ x=\frac{11}{2} \end{gathered}[/tex]therefore , the answer is
[tex]\begin{gathered} \text{first number=}\frac{11}{2} \\ \text{second number=}\frac{-5}{4} \end{gathered}[/tex]I hope this helps you