The formula to compute the binomial probability is given to be:
[tex]P(x)={{{{n\choose x}}}}p^x(1-p)^{n-x}[/tex]where
[tex]\begin{gathered} n=\text{ number of trials} \\ p=\text{ probability} \\ x=\text{ number of successes} \end{gathered}[/tex]The binomial coefficient is defined by:
[tex]{{{{{n\choose x}}}}}=\frac{n!}{x!(n-x)!}[/tex]The parameters provided in the question are:
[tex]\begin{gathered} n=10 \\ p=0.7 \\ x=8 \end{gathered}[/tex]Therefore, we can begin solving by calculating the binomial coefficient:
[tex]{{{n\choose x}}}=\frac{10!}{8!(10-8)!}=\frac{10!}{8!\cdot2!}=45[/tex]Hence, we can calculate the probability to be:
[tex]\begin{gathered} P(8)=45\times0.7^8\times(1-0.7)^{10-8} \\ P(8)=45\times0.7^8\times0.3^2 \\ P(8)=0.2334744405 \end{gathered}[/tex]ANSWER:
In 3 decimal places, the probability is 0.233.