We have the next equation
[tex]-11x=2x^2+15[/tex]First we need o make the equation equal to zero
[tex]2x^2+11x+15=0[/tex]we have a quadratic equation,we will have 2 solutions, so we will use the general formula to find the solutions to this equation
[tex]x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]in our case
a=2
b=11
c=15
[tex]x_{1,2}=\frac{-11\pm\sqrt[]{11^2-4(15)(2)}}{2(2)}_{}[/tex][tex]x_{1,2}=\frac{-11\pm\sqrt[]{121-120}}{4}=\frac{-11\pm1}{4}[/tex]for the first solution
[tex]x=\frac{-11+1}{4}=-\frac{10}{4}=-\frac{5}{2}[/tex]for the second solution
[tex]x=\frac{-11-1}{4}=\frac{-12}{4}=-3[/tex]the solutions to the equation given is
[tex]x=-\frac{5}{2},\: x=-3[/tex]the correct choices are B. and C.